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1 Universidade da Coruña (Spain), Centro de investigación CITIC; ruben.fcasal@udc.es, mariofr@udc.es

2 Universidad de las Fuerzas Armadas ESPE (Ecuador); sacastillo@espe.edu.ec

Abstract
In this work, a nonparametric procedure to approximate the conditional probability that a regionalized variable exceeds a certain threshold value is proposed. The method consists of a bootstrap algorithm that combines conditional simulation

techniques with nonparametric estimations of the trend and the variogram of the spatial process. For the local linear estimation of the mean, a bandwidth selection method that takes the spatial dependence into account is used. The variogram
is approximated by a flexible estimator based on the residuals, previously correcting its bias due to the estimation of the trend. The proposed method allows obtaining estimates of the exceedance risk in non-observed spatial locations, and its
behavior will be analyzed through simulation studies and with the application to a real data set.

Introduction

• Assuming that
{
Y (x),x ∈ D ⊂ Rd

}
is a spatial process that can

be modeled as:
Y (x) = µ(x) + ε(x), (1)

where µ(·) is the trend function and the error term ε, is a sec-
ond order stationary process with zero mean and covariogram
C(u) = Cov(ε (x) , ε (x + u)), with u ∈ D.

• In this framework, given n observed values Y =
(Y (x1), ..., Y (xn))

t, the goal is, using a fully nonparametric geo-
statistical approach, to estimate the conditional probability:

rc(x,Y) = P (Y (x) ≥ c|Y)

where c is a threshold (critical) value.

• The geostatistical techniques commonly used to approximate
this probability range from traditional methods, such as indica-
tor kriging (e.g. [6]), to more recent procedures, such us those
based on analysis of compositional data (e.g. [9]). However,
these methods are designed for a constant trend and usually
assume a parametric model for the variogram, therefore, they
can present misspecification problems.

• In this work, under the general spatial model (1), and without as-
suming any parametric model for the trend function and for the
dependence structure of the process, a general nonparametric
procedure for spatial risk assessment is proposed. This proce-
dure is a modification and an extension of the bootstrap method
to estimate the unconditional probability P (Y (x) ≥ c), proposed
in [4].

Nonparametric estimation

• The local linear trend estimator (e.g. [7]), obtained by linear
smoothing of {(xi, Y (xi)) : i = 1, . . . , n}, can be written as:

µ̂H(x) = SY,

where S is the smoother matrix, depending on a bandwidth ma-
trix H that controls the shape and size of the local neighborhood
used to estimate µ(x).

• The natural approach to estimate the dependence consists in
removing the trend and estimating the variogram from the resid-
uals r = Y − SY. Nevertheless, the residuals variability may be
very different to that of the true errors:

V ar(r) = Σ + SΣSt −ΣSt − SΣ = Σr

where Σ is the covariance matrix of the errors.

• As the bias due to the direct use of residuals in variogram es-
timation may have a significant impact on risk assessment, a
similar approach to that described in [5] will be used. Using an
iterative algorithm, the squared differences of the residuals are
conveniently corrected and used to compute a pilot local linear
variogram estimate. The final variogram estimate is obtained
by fitting a “nonparametric” isotropic Shapiro-Botha variogram
model [8], to the bias-corrected nonparametric pilot estimate.

Unconditional bootstrap

•We propose the following algorithm to generate uncondi-
tional bootstrap replicas Y ∗NS(xα) at the estimation loca-
tions {xα : α = 1, . . . , n0} (modification of that described in
Fernández-Casal et al [4])

1. Using the procedures described in previous section:
(a) Compute µ̂H(x) and the corresponding residuals r to obtain

γ̂r(·) and its corrected version γ̂(·), following [5].

(b) Form Σ̂r from γ̂r(·), and find the matrix L such that Σ̂r =
LrL

t
r, using Cholesky decomposition.

(c) Form Σ̂α corresponding to the estimation locations xα using
γ̂(·), and compute Lα such that Σ̂α = LαLtα.

2. Generate a bootstrap sample as follows:
(a) Compute the “uncorrelated” residuals e = L−1r r and center

them.

(b) Obtain independent bootstrap samples of size n0 from e, de-
noted by e∗.

(c) Compute the unconditional bootstrap errors ε∗NS = Lαe∗.

(d) Obtain the unconditional bootstrap replicas Y ∗NS(xα) =
µ̂H(xα) + ε∗NS(xα), α = 1, . . . , n0.

• The latter algorithm uses unconditional simulation techniques
based on Cholesky’s decomposition. As the behavior of these
replicas does not necessarily coincide with the observed values
at the sample locations (see, e.g. [1], Section 7.3.1), this algo-
rithm should not be used for conditional risk estimation.

Conditional bootstrap

• Taking into account the usual method to generate conditional
simulations of stationary processes (combining unconditional
simulation with kriging; see e.g. [1], Section 7.3.1), the proposed
bootstrap algorithm to estimate the conditional risk is as follows:

1. Use the unconditional bootstrap algorithm described in previ-
ous section to (jointly) generate ε∗NS(xα), α = 1, . . . , n0 and
ε∗NS(xi), i = 1, . . . , n.

2. Compute the simple kriging predictions ε̂(xα) and ε̂∗NS(xα)
from the observed residuals r and from the bootstrap errors
ε∗NS(xi), respectively.

3. Obtain the conditional bootstrap errors ε∗CS(xα) = ε̂(xα) +[
ε∗NS(xα)− ε̂

∗
NS(xα)

]
.

4. Compute the conditional bootstrap replicas Y ∗CS(xα) =
µ̂H(xα) + ε∗CS(xα).

5. Repeat steps 1 to 4 a large number of times B to obtain
Y
∗(1)
CS (xα), . . . , Y

∗(B)
CS (xα).

6. Compute r̂c(xα,Y) = 1
B

B∑
j=1

I
(
Y
∗(j)
CS (xα) ≥ c

)
.

Simulation results

•Regular grids in the unit square of different sizes n1 = 16 × 16
, 20 × 20 and 30 × 30 were considered. The top right diagonal
was set as the estimation locations (see Figure 1 (a)) and the
remaining ones as the sample (n = n1 − n0).

•N = 1, 000 samples were generated following model (1) on the
sample locations, with mean function µ(x1, x2) = 2.5+sin(2πx1)+
4(x2− 0.5)2 (see Figure 1 (b)) and random errors εi normally dis-
tributed with zero mean and isotropic exponential covariogram:

γθ(u) = c0 + c1 (1− exp (−3‖u‖/a)) ,

(for u 6= 0), where c0 is the nugget effect, c1 is the partial sill
(c1 = 1− c0) and a is the practical range. The values considered
were: a = 0.3, 0.6 and 0.9, c0 = 0, 0.2, 0.4 and 0.8.
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Figure 1. Sample and estimation locations (circles and triangles, respectively)

for n1 = 16× 16 (a) and theoretical trend (b).

•Using the proposed procedure, the conditional probabilities
P (Y (xα) ≥ c|Y) were estimated at each simulation, with c = 2, 3
and 4. Figure 2 shows the theoretical and estimated conditional
risks for c = 3, n1 = 16× 16, a = 0.6 and c0 = 0.2.
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Figure 2. Box plots of the theoretical (a) and estimated (b) conditional probabilities

of exceeding a threshold of 3.

• A summary of the squared errors (×10−2), for a = 0.6 and
c0 = 0.2, is shown in Table 1. In general, a good performance of
the proposed procedure was observed in all simulation settings.

Table 1. Summary of squared errors (×10−2) of the estimated conditional probabilities.
n1 = 16× 16 n1 = 20× 20 n1 = 30× 30

c mean median sd mean median sd mean median sd
2 0.31 0.04 1.20 0.21 0.03 0.82 0.10 0.01 0.43
3 0.31 0.03 1.10 0.19 0.01 0.74 0.09 0.01 0.35
4 0.11 0.00 0.46 0.07 0.00 0.36 0.04 0.00 0.20

Application to real data

• The proposed methodology was applied to total precipitations
(square-root of rainfall inches) during March 2016 recorded over
1053 locations on the continental part of USA. This data set is
supplied with the npsp package [3] for R. Figure 3 shows the
observed values (a), the estimated trend function (b), the bias-
corrected variogram estimates (c) and the kriging predictions (d).
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Figure 3. (a) Spatial locations and observed values, (b) nonparametric trend estimates,

(c) semivariogram estimates, and (d) kriging predictions

• Applying the bootstrap algorithm described above, estimated
probability maps for several critical values were computed. For
instance, Figure 4 shows the estimated unconditional (a) and
conditional (b) probabilities of occurring a total precipitation
larger than or equal to the threshold c = 2.0 (square-root of rain-
fall inches).
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Figure 4. Estimated unconditional (a) and conditional (b) risk maps for c = 2.0.

Conclusions

• As observed in the simulation results, the proposed methodol-
ogy yields accurate estimates of the conditional risk.

•Unlike traditional methods, as the approach is fully nonparamet-
ric, problems due to model misspecification are avoided. It can
also be applied when the process exhibits a non constant trend.

• The procedure was implemented in the statistical environment R,
using the functions for nonparametric trend and variogram esti-
mation supplied with the npsp package [3] (available on CRAN).
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