Modification of the bodyfat dataset for classification. The response bfan is a factor indicating a body fat value above the normal range. The variable bodyfat was dropped for convenience, and two new variables bmi (body mass index, in kg/m^2) and bmi2 (alternate body mass index, in kg^1.2/m^3.3) were computed (see examples below).

bfan

Format

A data frame with 246 rows and 16 columns:

bfan

Body fat above normal range

age

Age (years)

weight

Weight (kg)

height

Height (cm)

neck

Neck circumference (cm)

chest

Chest circumference (cm)

abdomen

Abdomen circumference (cm)

hip

Hip circumference (cm)

thigh

Thigh circumference (cm)

knee

Knee circumference (cm)

ankle

Ankle circumference (cm)

biceps

Biceps (extended) circumference (cm)

forearm

Forearm circumference (cm)

wrist

Wrist circumference (cm)

bmi

Body mass index (kg/m2)

bmi2

Alternate body mass index

Source

StatLib Datasets Archive: https://lib.stat.cmu.edu/datasets/bodyfat.

Details

See bodyfat and bodyfat.raw for details.

References

Penrose, K., Nelson, A. and Fisher, A. (1985). Generalized Body Composition Prediction Equation for Men Using Simple Measurement Techniques. Medicine and Science in Sports and Exercise, 17(2), 189. doi:10.1249/00005768-198504000-00037 .

See also

Examples

bfan <- bodyfat
# Body fat above normal
bfan[1] <- factor(bfan$bodyfat > 24 , # levels = c('FALSE', 'TRUE'),
                labels = c('No', 'Yes'))
names(bfan)[1] <- "bfan"
bfan$bmi <- with(bfan, weight/(height/100)^2)
bfan$bmi2 <- with(bfan, weight^1.2/(height/100)^3.3)

fit <- glm(bfan ~ abdomen, family = binomial, data = bfan)
summary(fit)
#> 
#> Call:
#> glm(formula = bfan ~ abdomen, family = binomial, data = bfan)
#> 
#> Coefficients:
#>              Estimate Std. Error z value Pr(>|z|)    
#> (Intercept) -23.76718    3.06157  -7.763 8.29e-15 ***
#> abdomen       0.24109    0.03172   7.600 2.95e-14 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for binomial family taken to be 1)
#> 
#>     Null deviance: 300.88  on 245  degrees of freedom
#> Residual deviance: 171.37  on 244  degrees of freedom
#> AIC: 175.37
#> 
#> Number of Fisher Scoring iterations: 6
#>