A subset related to the white variant of the Portuguese "Vinho Verde" wine,
containing physicochemical information (fixed.acidity
, volatile.acidity
,
citric.acid
, residual.sugar
, chlorides
, free.sulfur.dioxide
,
total.sulfur.dioxide
, density
, pH
, sulphates
and alcohol
)
and sensory (taste
), which indicates the quality of the wine (it is
considered good if the median of the wine quality evaluations, made by experts,
who evaluated them between 0 = very bad and 10 = very excellent, is not less
than 6).
winetaste
A data frame with 1,250 rows and 12 columns:
fixed acidity
volatile acidity
citric acid
residual sugar
chlorides
free sulfur dioxide
total sulfur dioxide
density
pH
sulphates
alcohol
factor with levels "good"
and "bad"
indicating the quality
of the wine
UCI Machine Learning Repository: https://archive.ics.uci.edu/dataset/186/wine+quality.
For more details, consult https://www.vinhoverde.pt/en/ or the reference Cortez et al. (2009).
Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4), 547-553.
winetaste <- winequality[, names(winequality)!="quality"]
winetaste$taste <- factor(winequality$quality < 6,
labels = c('good', 'bad')) # levels = c('FALSE', 'TRUE')
str(winetaste)
#> 'data.frame': 1250 obs. of 12 variables:
#> $ fixed.acidity : num 6.8 7.1 6.9 7.5 8.6 7.7 5.4 6.8 6.1 5.5 ...
#> $ volatile.acidity : num 0.37 0.24 0.32 0.23 0.36 0.28 0.59 0.16 0.28 0.28 ...
#> $ citric.acid : num 0.47 0.34 0.13 0.49 0.26 0.63 0.07 0.36 0.27 0.21 ...
#> $ residual.sugar : num 11.2 1.2 7.8 7.7 11.1 11.1 7 1.3 4.7 1.6 ...
#> $ chlorides : num 0.071 0.045 0.042 0.049 0.03 0.039 0.045 0.034 0.03 0.032 ...
#> $ free.sulfur.dioxide : num 44 6 11 61 43.5 58 36 32 56 23 ...
#> $ total.sulfur.dioxide: num 136 132 117 209 171 179 147 98 140 85 ...
#> $ density : num 0.997 0.991 0.996 0.994 0.995 ...
#> $ pH : num 2.98 3.16 3.23 3.14 3.03 3.08 3.34 3.02 3.16 3.42 ...
#> $ sulphates : num 0.88 0.46 0.37 0.3 0.49 0.44 0.57 0.58 0.42 0.42 ...
#> $ alcohol : num 9.2 11.2 9.2 11.1 12 8.8 9.7 11.3 12.5 12.5 ...
#> $ taste : Factor w/ 2 levels "good","bad": 2 2 2 1 2 2 1 1 1 2 ...