.rng
is a list containing the state of the uniform pseudorandom number
generator (with components seed
, method
and parameters
).
It is advisable to use set.rng()
to set it.
rng()
returns a sequence of uniform pseudorandom numbers
(using the generator selected with set.rng()
).
rlcg()
returns a sequence of uniform pseudorandom numbers
using the linear congruential generator (LCG).
rvng()
returns a sequence of uniform pseudorandom numbers
using the Von Neumann middle-square method.
set.rng(seed = as.numeric(Sys.time()), type = c("lcg", "vng"), ...)
rng(n)
rlcg(n, seed = as.numeric(Sys.time()), a = 7^5, c = 0, m = 2^31 - 1)
rvng(n, seed = as.numeric(Sys.time()), k = 4)
initial seed.
string specifying the generator.
generator parameters.
number of generations.
multiplier.
increment.
modulus.
number of digits.
set.rng()
stores the state of the generator in .rng
in the global
environment.
rng()
, rlcg()
and rvmg()
return a numeric vector.
print(set.rng())
#> $seed
#> [1] 1698920300
#>
#> $type
#> [1] "lcg"
#>
#> $parameters
#> $parameters$a
#> [1] 16807
#>
#> $parameters$c
#> [1] 0
#>
#> $parameters$m
#> [1] 2147483647
#>
#>
rng(10)
#> [1] 0.3776134 0.5486907 0.8447358 0.4742613 0.9093104 0.7800892 0.9595596
#> [8] 0.3175281 0.6951973 0.1803428
.rng
#> $seed
#> [1] 387283206
#>
#> $type
#> [1] "lcg"
#>
#> $parameters
#> $parameters$a
#> [1] 16807
#>
#> $parameters$c
#> [1] 0
#>
#> $parameters$m
#> [1] 2147483647
#>
#>