Aggregates the squared residuals of a local polynomial kernel smoothing into the regular grid of discretization points, i.e. computes the functional residual variance (using \(n\) as denominator) and the sample size.
npf.bin.res2(x)
local polynomial fit (npf.locpol
-class
object).
Returns an S3 object of class npf.bin.res2
extending
npsp::bin.data
(bin data + grid par.).
fd <- npf.data(ozone, dimnames = "day")
# Linear Local trend estimate
lp <- locpol(fd, h = 35)
# Bandwidth selection for variance estimation
bin.res2 <- npf.bin.res2(lp)
h.cv(bin.res2)
#> $h
#> [,1]
#> [1,] 6.947037
#>
#> $value
#> [1] 358771.2
#>
#> $objective
#> [1] "CV"
#>