R/cpu.time.R
, R/data.grid.R
, R/h.cv.R
, and 6 more
npsp-internals.Rd
Listed below are supporting functions for the major methods in npsp.
.cpu.time.ini()
revdim(a, d)
.compute.masked(bin, cov.bin = NULL, tol.mask = npsp.tolerance(2))
.wloss(est, teor, w, loss = c("MSE", "MRSE", "MAE", "MRAE"))
# S3 method for class 'locpol.bin'
residuals(object, ...)
.kriging.simple.solve(x, newx, svm)
# S3 method for class 'np.geo'
residuals(object, ...)
# S3 method for class 'grid.par'
print(x, ...)
# S3 method for class 'grid.par'
dim(x)
# S3 method for class 'grid.par'
dimnames(x)
# S3 method for class 'grid.par'
as.data.frame(x, row.names = dimnames(x), optional = FALSE, ...)
is.data.grid(x)
# S3 method for class 'data.grid'
dim(x)
# S3 method for class 'data.grid'
dimnames(x)
.rice.rule(x, a = 2, b = 3, ...)
splot.plt(
horizontal = FALSE,
legend.shrink = 0.9,
legend.width = 1,
legend.mar = ifelse(horizontal, 3.1, 5.1),
bigplot = NULL,
smallplot = NULL
)
.rev.colorRampPalette(colors, interpolate = "spline", ...)
scale values.
(optional) covariance matrix of the binned data or semivariogram model
(svarmod
-class) of the (unbinned) data.
object used to select a method:
local polynomial estimate of the trend (class locpol.bin
)
or nonparametric geostatistical model (class extending np.geo
).
further arguments passed to or from other methods.
vector/matrix with data locations (each component/row is an observation location).
vector/matrix with the (irregular) locations to predict
(each component/row is a prediction location).
or an object extending grid.par
-class
(data.grid
).
semivariogram model (of class extending svarmod
).
exponent values.
.compute.masked
returns a list with components:
logical vector bin$binw > tol.mask
.
x$binw[mask]
.
sum(w)
.
(optional) bin$locpol$hat[mask, mask]
.
(optional) masked (aproximated) covariance matrix of the binned data.