Bibliografía
Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Leigh, S., Levenson, M., Vangel, M., Heckert, N., y Banks, D. (2010). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Special Publication (NIST SP), National Institute of Standards; Technology, Gaithersburg, MD. https://doi.org/10.6028/NIST.SP.800-22r1a
Bratley, P., Fox, B. L., y Schrage, L. E. (1983). A Guide to Simulation. Springer. https://link.springer.com/book/10.1007/978-1-4684-0167-7
Cao Abad, R. (2002). Introducción a la Simulación y a la Teoría de Colas. Netbiblo. https://books.google.es/books?id=lET6IPBm2vMC
Chen, H.-C., y Asau, Y. (1974). On generating random variates from an empirical distribution. AIIE Transactions, 6(2), 163-166.
Cheng, R. C. (1978). Generating beta variates with nonintegral shape parameters. Communications of the ACM, 21(4), 317-322.
Davies, R. B., y Harte, D. S. (1987). Tests for Hurst effect. Biometrika, 74(1), 95-101.
Demirhan, H., y Bitirim, N. (2016). CryptRndTest: An R Package for Testing the Cryptographic Randomness. The R Journal, 8(1), 233-247. https://doi.org/10.32614/rj-2016-016
Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer. https://link.springer.com/book/10.1007/978-1-4613-8643-8
Dietrich, C. R., y Newsam, G. N. (1997). Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM Journal on Scientific Computing, 18(4), 1088-1107.
Downham, D. Y. (1970). Algorithm AS 29: The Runs Up and Down Test. Applied Statistics, 19(2), 190-192. https://doi.org/10.2307/2346558
Fernández-Casal, R., Costa, J., y Oviedo, M. (2024). Métodos predictivos de aprendizaje estadístico. Servizo de Publicacións. Universidade da Coruña. https://doi.org/10.17979/spudc.9788497498937
Fox, B. L. (1963). Generation of random samples from the beta F distributions. Technometrics, 5(2), 269-270.
Gilks, W. R., y Wild, P. (1992). Adaptive Rejection Sampling for Gibbs Sampling. Applied Statistics, 41(2), 337-348. https://doi.org/10.2307/2347565
Hacking, I. (1965). Logic of Statistical Inference. Cambridge University Press.
Hall, S. W. (1994). Analysis of defectivity of semiconductor wafers by contingency table. Proceedings of the Institute of Environmental Sciences, 1, 177-183.
Hofert, M., Kojadinovic, I., Mächler, M., y Yan, J. (2018). Elements of Copula Modeling with R. Springer. https://doi.org/10.1007/978-3-319-89635-9
Hörmann, W. (1995). A rejection technique for sampling from T-concave distributions. ACM Transactions on Mathematical Software (TOMS), 21(2), 182-193.
Hörmann, W., Leydold, J., y Derflinger, G. (2004). Automatic Nonuniform Random Variate Generation. Springer. https://link.springer.com/book/10.1007/978-3-662-05946-3
Hull, T. E., y Dobell, A. R. (1962). Random number generators. SIAM review, 4(3), 230-254.
Hyndman, R. J., y Athanasopoulos, G. (2018). Forecasting: principles and practice (2nd edition). OTexts. https://otexts.com/fpp2
Jöhnk, M. (1964). Generation of beta distribution and gamma distribution random variates. Metrika, 8, 5-15.
Kinderman, A. J., y Monahan, J. F. (1977). Computer Generation of Random Variables Using the Ratio of Uniform Deviates. ACM Transactions on Mathematical Software, 3(3), 257-260. https://doi.org/10.1145/355744.355750
Knuth, D. E. (1969). The Art of Computer Programming: Semi-numerical algorithms (Vol. 2). Addison-Wesley. https://www-cs-faculty.stanford.edu/~knuth/taocp.html
Knuth, D. E. (2002). The Art of Computer Programming (tercera, Vol. 2). Addison-Wesley.
Kronmal, R. A., y Peterson Jr, A. V. (1979). On the alias method for generating random variables from a discrete distribution. The American Statistician, 33(4), 214-218.
L’Ecuyer, P. (1999). Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators. Operations Research, 47(1), 159-164. https://doi.org/10.1287/opre.47.1.159
L’Ecuyer, P., y Simard, R. (2007). TestU01. ACM Transactions on Mathematical Software, 33(4), 1-40. https://doi.org/10.1145/1268776.1268777
Lehmer, D. H. (1951). Mathematical models in large-scale computing units. The Annals of the Computation Laboratory of Harvard University, 26, 141-146.
Liu, J. S. (2004). Monte Carlo Strategies in Scientific Computing. Springer. https://doi.org/10.1007/978-0-387-76371-2
Marsaglia, G. (1968). Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences, 61(1), 25-28.
Marsaglia, G. (1977). The squeeze method for generating gamma variates. Computers & Mathematics with Applications, 3(4), 321-325.
Marsaglia, G., y Tsang, W. W. (2002). Some Difficult-to-Pass Tests of Randomness. Journal of Statistical Software, 7(3). https://doi.org/10.18637/jss.v007.i03
Marsaglia, G., Zaman, A., y Tsang, W. W. (1990). Toward a universal random number generator. Statistics & Probability Letters, 9(1), 35-39. https://doi.org/10.1016/0167-7152(90)90092-l
Matsumoto, M., y Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 8(1), 3-30. https://doi.org/10.1145/272991.272995
Metropolis, N., y Ulam, S. (1949). The monte carlo method. Journal of the American Statistical Association, 44(247), 335-341.
Nelsen, R. B. (2006). An introduction to copulas (2nd ed.). Springer.
Odeh, R. E., y Evans, J. O. (1974). Algorithm AS 70: The Percentage Points of the Normal Distribution. Applied Statistics, 23(1), 96-97. https://doi.org/10.2307/2347061
Park, S. K., y Miller, K. W. (1988). Random number generators: good ones are hard to find. Communications of the ACM, 31(10), 1192-1201. https://doi.org/10.1145/63039.63042
Park, S. K., Miller, K. W., y Stockmeyer, P. K. (1993). Technical correspondence: Response. Communications of the ACM, 36(7), 108-110.
Patefield, W. M. (1981). Algorithm AS 159: An Efficient Method of Generating Random R \(\times\) C Tables with Given Row and Column Totals. Applied Statistics, 30(1), 91-97. https://doi.org/10.2307/2346669
Ripley, B. D. (1987). Stochastic Simulation. Wiley. https://www.wiley.com/en-us/Stochastic+Simulation-p-9780470009604
Ross, S. M. (1999). Simulation. Prentice Hall.
Rotenberg, A. (1960). A new pseudo-random number generator. Journal of the ACM, 7(1), 75-77.
Rubin, D. B. (1987). The calculation of posterior distributions by data augmentation: Comment: A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Journal of the American Statistical Association, 82(398), 543-546.
Schrage, L. (1979). A more portable Fortran random number generator. ACM Transactions on Mathematical Software (TOMS), 5(2), 132-138.
Shannon, R. E. (1975). Systems Simulation: The Art and Science. Prentice-Hall.
Spinoza, B. (1677). Ethics.
Tausworthe, R. C. (1965). Random numbers generated by linear recurrence modulo two. Mathematics of Computation, 19(90), 201-209.
Von Neumann, J. (1951). Various techniques used in connection with random digits. Journal of Research of the National Institute of Standards, Appl. Math. Ser., 3, 36-38.
Walker, A. J. (1977). An efficient method for generating discrete random variables with general distributions. ACM Transactions on Mathematical Software (TOMS), 3(3), 253-256.
Wichura, M. J. (1988). Algorithm AS 241: The Percentage Points of the Normal Distribution. Applied Statistics, 37(3), 477-484. https://doi.org/10.2307/2347330